Complete decomposition algorithm for nonconvex separable optimization problems and applications
نویسنده
چکیده
Abstraet~In this paper, we present a complete decomposition algorithm for nonconvex separable optimization problems applied in the optimal control problems. This complete decomposition algorithm combines recursive quadratic programming with the dual method. When our algorithm is applied to discretized optimal control problems, a simple and parallel computation and a simple and regular data flow pattern between consecutive computational steps results. This paper also suggests an approach for developing a hardware implementation of our algorithm and gives an estimation of the execution time needed to solve a practical example.
منابع مشابه
A Duality Theory with Zero Duality Gap for Nonlinear Programming
Duality is an important notion for constrained optimization which provides a theoretical foundation for a number of constraint decomposition schemes such as separable programming and for deriving lower bounds in space decomposition algorithms such as branch and bound. However, the conventional duality theory has the fundamental limit that it leads to duality gaps for nonconvex optimization prob...
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملPenalty Dual Decomposition Method For Nonsmooth Nonconvex Optimization
Many contemporary signal processing, machine learning and wireless communication applications can be formulated as nonconvex nonsmooth optimization problems. Often there is a lack of efficient algorithms for these problems, especially when the optimization variables are nonlinearly coupled in some nonconvex constraints. In this work, we propose an algorithm named penalty dual decomposition (PDD...
متن کاملAn Augmented Lagrangian Based Algorithm for Distributed NonConvex Optimization
This paper is about distributed derivative-based algorithms for solving optimization problems with a separable (potentially nonconvex) objective function and coupled affine constraints. A parallelizable method is proposed that combines ideas from the fields of sequential quadratic programming and augmented Lagrangian algorithms. The method negotiates shared dual variables that may be interprete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Automatica
دوره 28 شماره
صفحات -
تاریخ انتشار 1992